



### **Overview: Cover crops**

- Definitions
- Crop rotation
- Choosing a cover crop
  - Cover crop functions
  - Cover crop costs
  - Nutrient availability
  - Cover crop classification
  - Crops for the Southeast



(Photo from: panoramio.com)



#### **Cover crops**

- Important for preventing nutrient and soil loss
- Grown primarily for soil or agroecosystem improvement rather than for market
- Provide a variety of ecosystem services
- Can also have negative impacts if improperly managed or poor species selection
- Primary fertility and soil management tool available to organic farmers



#### **Cover crops**

- Cover crop: "covers" the soil with living plants
- Green manure: cover crop grown mainly to be turned under for soil improvement
- Catch crop: cover crop grown to "catch"
   water-soluble nutrients remaining after cash
   crop harvest to prevent leaching, runoff losses
- Most cover crops serve multiple functions



### **Overview: Cover crops**

- Definitions
- Crop rotation
- Choosing a cover crop
  - Cover crop functions
  - Cover crop costs
  - Nutrient availability
  - Cover crop classification
  - Crops for the Southeast



(Photo from: panoramio.com)



## Why bother?

- ➤ A good rotational sequence can accentuate every possible advantage
- > Different crops use soil nutrients differently
- ➤ All may alter or be altered by the succeeding or preceding crop
- > Time spent planning a rotation is never wasted!
- >THINK IT THROUGH!



Well-thought-out crop rotation is worth 75% of everything else that might be done, including fertilization, tillage and pest control.

-Firmin Bear



# Incorporating cover crops or green manures in your rotation

- Investment in weed and pest control
- Rotations can make nutrients more available









# Incorporating cover crops or green manures in your rotation

- Vegetable systems have many windows to include cover crops or green manures
  - Example: Between harvest of early planted spring crop and planting of fall crops
    - Buckwheat, cowpeas, sorghum-sudangrass









# Incorporating cover crops or green manures in your rotation

- Plant winter annuals on fields that would lie fallow
- Many vegetable crops can be overseeded with cover crops
  - Select crops that can tolerate shade and traffic





### **Overview: Cover crops**

- Definitions
- Crop rotation
- Choosing a cover crop
  - Cover crop functions
  - Cover crop costs
  - Nutrient availability
  - Cover crop classification
  - Crops for the Southeast





## Choosing a cover crop

- Step 1: Identify what function is needed from the cover crop
  - What is limiting production in a given system?
     low fertility?
     poor soil structure?
     weed or pathogen populations?
  - What functions can cover crops serve?



### **Functions of cover crops**

#### SOIL FERTILITY

- \*Enhance
  nutrient
  availability
- \*Prevent leaching
- \*个 yields

#### **PESTS**

- Beneficial habitat
- Reduce diseases

#### SOIL STRUCTURE

- \*Increase organic matter
- \*Slow/prevent
  erosion

#### **WATER**

- \*Improve infiltration
- \*Retain moisture
- \*Protect water
  quality



## Soil fertility

- Provide nitrogen
  - Legumes- symbiotic relationship between legumes and rhizobia bacteria that fix atmospheric nitrogen in plant root nodules
- Scavenge soil nutrients remaining after a cash crop
  - Potentially available to following cash crop
  - Prevents leaching losses, which improves soil fertility and decreases environmental impact
  - Generally non-legumes, primarily grasses



#### **Pest control**

- Suppress weeds
  - Through competition, allelopathy, shading, etc.
  - Cereal rye, sorghum-sudangrass, other grasses
  - Rotate cover crops, so that weeds that compete well with that cover crop do not build up
  - Can be used as a killed mulch (mechanically or herbicide) in notill systems to suppress weeds





# Influence of Tillage and Cover Crop on Weed Populations

| <u>Tillage</u> | Cover Crop | Weeds/ft <sup>2</sup> |
|----------------|------------|-----------------------|
| Conventional   | None       | 12                    |
| None           | None       | 5                     |
| None           | Rye        | 0.9                   |
| None           | Wheat      | 0.3                   |
| None           | Barley     | 0.8                   |

(Putnam et al., 1983)



#### **Pest control**

- Provide habitat for beneficial insects
  - Most applicable in permanent systems

     (e.g. orchard groundcovers) but also applicable in annual systems

Slide courtesy of David Butler,
UT Organic, Sustainable and Alternative Crops



(photos: marabelgroup.com, panoramio.com)



#### **Pest control**

- Suppress soilborne pests and diseases
  - Some species known for their ability to suppress certain pathogens (e.g. sorghum-sudan or sunn hemp and root-knot nematodes)
  - Others are good hosts for root-knot nematodes (certain clovers)
  - Brassicas used for biofumigation, nematodetrapping effects



# **Brassicas as Biofumigants**



Slide courtesy of Gary Bates, UT Forage Specialist



# Effect of *Brassica* leaf tissue on *Rhizoctonia solani* growth



Charron and Sams. 1999. J. Amer. Society of Hort. Science. Vol. 124:5. p. 467.



# Effect of leaf tissue on Pythium ultimum growth



Charron and Sams. 1999. J. Amer. Society of Hort. Science. Vol. 124:5. p. 467.



Effect of Indian mustard on Sclerotium rolfsii growth



Grams fresh wt of Indian mustard/Liter

Harvey and Sams. 2002. J. Amer. Society of Hort. Science. Vol. 127:1. p. 27.



#### Soil structure

- Increase soil organic matter and soil biological activity
  - Major influence on most soil properties (bulk density, porosity, nutrient and water holding capacity, etc.)
  - High biomass producing cover crops, generally grass species
  - Solubilize less soluble nutrients such as phosphorus
- Prevent soil erosion
  - Covers soil during fallow periods, preventing loss of soil and associated nutrients
  - Rapidly growing species are best, but most cover crops fill this role



#### Water

- Protect water quality
  - Prevent erosion
  - Scavenge nutrients
- Improve soil drainage
  - Deep-rooted cover crop species can break through compacted soil layers and improve drainage
  - Organic matter improves soil aggregation
  - Bell beans, clovers, cereal grains, etc.
- Conserve soil moisture



## Choosing a cover crop

- Step 2: Identify the cover crop planting niche
  - Where does the cover crop fit in the crop rotation?
    - Warm-season or cool-season
    - Other climatic variables
      - Precipitation
      - Temperature (summer highs, winter lows)
      - Day-length
    - Compatibility with previous and subsequent cash crops
  - Define timing of critical cash crop operations, so that cover crop management does not conflict



## Choosing a cover crop

- Step 3: Select cover crop that meets goals and requirements of steps 1 & 2
  - Consider benefits and drawbacks (perfect fit unlikely)
  - Consider cost and availability of seed (especially with organic and untreated seed)
  - Consider management costs (field operations needed to plant, kill, etc.)



(photo: ucanr.org; Miles and Brown, 2003)



#### **Cover crop costs**

- Direct costs
  - Seed
  - Establishment (e.g. tillage, drilling, irrigation)
  - Termination (e.g. mowing, tillage, rolling/crimping, herbicide)





Slide courtesy of David Butler, UT Organic, Sustainable and Alternative Crops



#### **Cover crop costs**

- Indirect costs
  - Interference with following cash crop
    - Soil temperature
    - N release
    - Residue
  - Management issues
    - Difficult termination
    - Weediness



Slide courtesy of David Butler, UT Organic, Sustainable and Alternative Crops



#### **Cover crop costs**

- Opportunity costs
  - Cost of forfeit income if a cash crop alternative was feasible
  - Can be the most important limitation



Slide courtesy of David Butler, UT Organic, Sustainable and Alternative Crops



### Nitrogen availability

- N acquired through fixation or plant uptake
- Availability to subsequent crop is variable
  - 10% to more than 50%
  - Transformation from unavailable N to available controlled by interaction of factors:
    - Environment
      - Increases with temperature and moisture
      - Increases with lighter, more aerated soils
    - Management
      - Incorporation > mowing > rolling
    - Tissue quality
      - C:N ratio, lignin, etc. (slower decomposition = slower N release)



### Carbon to nitrogen ratio

- Important property affecting cover crop residue persistence, nutrient release, etc.
  - High C:N ratio
    - Greater persistence as surface mulch, slower nutrient release
    - In general: grasses > broadleaves > legumes
    - Increase with maturity
  - Low C:N ratio
    - Quicker nutrient release and breakdown, poor persistence
    - Unlikely to tie-up soil nutrients



### Cover crop classes

- Cool-season annuals
  - Legumes vs. non-legumes (grasses & broadleaves)
  - Winter-hardy vs. non-hardy
- Warm-season annuals
  - Legumes vs. non-legumes
    - Grasses
    - Broadleaves
- Perennials and biennials/ley/sod crops





## **Life Cycles**

#### **Annuals**

- germinate, grow, bloom in 1 growing season usually easier to kill

#### **Biennials**

- take 2 years to complete life cycle
- vegetative 1<sup>st</sup> year, flower 2<sup>nd</sup> year

#### **Perennials**

- live more than one year
- more difficult to kill



## **Life Cycles**

#### **Cool season plants**





# **Life Cycles**

#### Warm season plants





- Crimson clover (Trifolium incarnatum)
  - N contribution 70 to 150 lbs/acre
  - Planted in mid-fall in TN, rapid spring growth
  - Grows well mixed with small grains (e.g. rye, triticale, wheat)
  - Good pollen source for bees
  - Not winter-hardy in colder climates (zone ~ 6 +)







- Hairy vetch (Vicia villosa)
  - N contribution 100 to 150 lbs/acre
  - Planted in mid-fall in TN
  - Grows well mixed with small grains (e.g. rye, triticale, wheat)
  - Quickly smothers spring weeds
  - Hard-seeded, can become a weed problem
  - Very winter hardy (zone ~ 4 +)





- Winter Pea (Pisum sativum ssp. arvense)
  - N contribution 90 to 150
     lbs/acre, as much as 300
     lb/acre reported
  - Planted in mid-fall in TN
  - Low water use
  - Not as winter hardy as hairy vetch or crimson clover (zone ~ 7 +)





- Lupin (Lupinus albus, L. angustifolus, etc.)
  - N contribution 100 to 150 lbs/acre
  - Aggressive taproots
  - Easy to kill mechanically
  - Not as winter hardy as hairy vetch or crimson clover (zone ~ 7 +; no farther north than the TN valley)





- Fava or bell bean (Vicia faba)
  - Grows well in cool conditions
  - High biomass producer
  - Deep taproot
  - Over 100 lbs N/acre
  - Not as winter hardy as other cool-season legumes (~ zone 8 +)
  - Can be managed as a winter-killed cover in TN







# Other cool-season annual legumes

- Berseem clover (Trifolium alexandrinum)
- Balansa clover (*Trifolium* michelianum)
- Medics (Medicago spp.)
- Common vetch (Vicia sativa)
- Red clover\* (Trifolium pratense)
- Sweet clover\* (Melilotus officinalis and M. alba)
   \*biennials













# **Cool-season non-legumes**

- Rye (Secale cereale)
  - Should not be confused with annual (Lolium multiflorum) or perennial ryegrass (Lolium perenne)
  - Very cold hardy
  - Good nutrient scavenger
  - High early season biomass
  - Allelopathic (DIBOA)
- Other cereal grains
  - Wheat (Triticum aestivum), barley (Hordeum vulgare), triticale (× Triticosecale)
  - Certain oat (Avena sativa) cultivars can be used when winter-kill is desired

Extension

• Good for building organic matter





# **Cool-season non-legumes**

#### Brassicas

- Mustards (Brassica juncea, Sinapsis alba, B. carinata, B. nigra)
- Rapeseed & canola (B. napus, B. rapa, B. campestris)
- Oilseed & tillage radish (Raphanus sativus)
- Arugula (Eruca sativa)
- Pest suppression
- Potential biofumigants
- Good nutrient scavenging ability
- Winter hardiness varies
- Attract beneficial insects at bloom





# **Tillage Radish**

- Breaks up compaction
- Controls winter annuals
- Captures N in the fallreleases in the spring
- 16" deep 40 days after planting
- Subsoils without bringing rocks to surface
- Shown to increase corn yield in OH



Information and photo courtesy of Steve Groff,

Cedar Meadow Farm



# **Cool-season non-legumes**

- Annual ryegrass (Lolium multiflorum)
  - Good nutrient scavenging
  - Good biomass production
     with sufficient N and moisture
  - Residue does not persist as well as cereal grains
  - Not as cold hardy as cereal rye
  - Can become a weed





# **Cool-season non-legumes**

- Phacelia (Phacelia tanacetifolia)
  - Native to CA, but developed as cover crop in Europe
  - Good catch crop, smother crop, and pollen source
  - Can be grown as summer or winter annual, though not hardy below ~ 20 F





- Sunn hemp (Crotalaria juncea)
  - Rapid biomass and N production (120 lbs N/acre in 9 weeks)
  - Does best in very warm conditions
  - Limited by seed cost and availability in U.S.
  - Suppressive to root-knot and reniform nematodes





- Bean-like
  - Cowpea (Vigna unguiculata)
  - Velvet bean (Mucuna pruriens)
  - Soybean (Glycine max)
  - Hyacinth bean (Lablab purpureus)
  - Jack bean (Canavalia ensiformis)
- High biomass and N production
- Work well mixed with warmseason grasses
- Pest suppression and allelopathy vary







- Sorghum-sudangrass hybrid (Sorghum bicolor x S. bicolor var. sudanense)
- Very high biomass production, great for building soil organic matter
- High allelopathy and very competitive with weeds
- Suppressive against some pathogens and nematodes





### Millets

- Pearl millet (Pennisetum glaucum), Japanese millet (Enchinochloa frumentacea), & German (foxtail) millet (Setaria italica)
- High biomass
- Very tolerant of drought,
   heat, low fertility









- Buckwheat (Fagopyrum esculentum)
  - Rapid growth (maturity in 45 days)
  - Good smother crop
  - Attracts pollinators
  - Can seed easily and become weedy if not well-managed







- Sesame (Sesamum indicum)
  - Likely to be suppressive against root-knot nematodes and some pathogens
  - Prefers very warm conditions
  - Extensive root system





# Perennial/ley/sod crops

- Longer fallow periods
- Build soil organic matter
  - Root biomass
- Legumes contribute high N
- Used for grazing, haying, etc.
- Options
  - Alfalfa, red clover, white clover
  - Orchardgrass, tall fescue, etc.











# **Evaluating Fall Planted Cover Crops for Organic Systems in East Tennessee**

- Timing is critical for proper cover establishment
- Cover crop choice is important
  - Grain versus legume
- Choosing a grain-legume biculture may maximize the benefits of both crop types



## **Objectives:**

- Determine if grain crop/legume biculture results in increased biomass and higher nitrogen than monoculture plantings;
- Determine effect of planting data on crop growth, soil cover and percent carbon and nitrogen content.



- Study carried out in 2008 and 2009
- Grains:
  - soft red winter wheat
  - winter rye
  - winter barley
  - winter triticale
  - spring oats, untreated
     (Sources Albert Lea Seed House, Albert Lea, MN, Knox Seed and Greenhouse)

- Legumes:
  - crimson clover
  - medium red clover
  - ladino clover
  - Austrian winter pea
  - hairy vetch(Source Seven Springs Farm, Check, VA)



- Treatments included all crops in monoculture and all possible grain x legume combinations and a no-crop check plot (36 treatments
- The planting rate was 120 lbs/acre for all the grains used in monoculture and 30 (C), 4 (L), 10 (r), 40 (V) and 120 (A) lbs/acre for the legumes
- The planting rate was 60 lbs/acre for all the grains used in biculture and 15, 2, 5, 20 and 60 lbs/acre for the legumes
- Field (160 ft x 305 ft) spaded with an Imants Spader (Imants, Reusel, The Netherlands) and cultipacked with a Brillon seed cultipacker (Brillion, WI)
- Plots were 64" wide by 20' long and seeds were planted 1" deep with a 64"-wide Almaco light duty grain drill (Almaco, Nevada, IA)



- Prior to planting, legume seed was separated and inoculated
  - vetch: N-Dure (Rhizobium leguminosarum biovar viceae)
  - clover: N-Dure (Sinorhizobium meliloti and Rhizobium leguminosarum biovar trifolii)
  - Austrian winter pea: Guard-N (*Bradyrhizobium* sp. and *Rhizobium leguminosarum*)
    - (Source INTX Microbials, LLC, Kentland, IN)



- Planting dates in 2008: 16 Sept, 13 Oct and 19 Nov; in 2009: 25 Sept, 21 Oct and 12 Nov
- In mid-April of the following spring (2009 and 2010), population density was measured by diagonal transect, collecting 10 samples per plot to determine % percent cover
- A 1 ft<sup>2</sup> quadrant was tossed at random to collect biomass
- Biomass was dried, ground and analyzed for carbon and nitrogen content
- Analysis was done using a NC analyzer (Flash 2000, Thermo Scientific, Waltham, MA).



# % Nitrogen 2009

| Crop | September       | October         | November       |
|------|-----------------|-----------------|----------------|
| Α    | 0.85 ± 0.07     | $0.74 \pm 0.05$ |                |
| BA   | $0.35 \pm 0.07$ | $0.31 \pm 0.06$ |                |
| OA   | $0.68 \pm 0.09$ | 0.79 ± 0.05     | $0.90 \pm 0.2$ |
| TA   | $0.32 \pm 0.05$ | $0.34 \pm 0.06$ | 0.55 ± 0.2     |
| RA   | $0.47 \pm 0.09$ | $0.42 \pm 0.05$ | $0.60 \pm 0.1$ |
| WA   | $0.28 \pm 0.07$ | $0.43 \pm 0.06$ | $0.64 \pm 0.1$ |
| С    | 0.58 ± 0.05     | $0.59 \pm 0.05$ |                |
| L    |                 |                 |                |
| r    | $0.34 \pm 0.09$ | $0.48 \pm 0.09$ |                |
| V    | $0.85 \pm 0.05$ | $0.86 \pm 0.09$ | $0.64 \pm 0.1$ |
| В    | 0.28 ± 0.05     | $0.25 \pm 0.04$ |                |
| 0    | $0.28 \pm 0.09$ |                 |                |
| Т    | $0.40 \pm 0.05$ | $0.32 \pm 0.04$ |                |
| R    | $0.54 \pm 0.05$ | $0.32 \pm 0.05$ | $0.6 \pm 0.2$  |
| W    | 0.21 ± 0.05     | $0.21 \pm 0.04$ | 0.6 ± 0.1      |

# % N and C of grain and legume monocultures by planting date

| Month           | Crop type | % nitrogen           | % carbon            | C:N  |
|-----------------|-----------|----------------------|---------------------|------|
| Sept            | grain     | 0.29 ± 0.0 <b>b</b>  | 7.7 ± 0.7 <b>ab</b> | 26.6 |
| Sept            | legume    | 0.73 ± 0.2 <b>a</b>  | 7.1 ± 0.8 <b>ab</b> | 9.7  |
| Oct             | grain     | 0.27 ± 0.0 <b>b</b>  | 7.8 ± 0.5 <b>a</b>  | 28.9 |
| Oct             | legume    | 0.66 ± 0.0 <b>a</b>  | 7.8 ± 0.1 <b>a</b>  | 11.8 |
| Nov             | grain     | 0.58 ± 0.1 <b>ab</b> | 8.5 ± 0.1 <b>a</b>  | 14.7 |
| Nov             | legume    | 0.64 ± 0.4 <b>a</b>  | 5.3 ± 2.8 <b>b</b>  | 8.3  |
| month (p; df)   |           | p = .6009; 2, 9      | p = .7275; 2, 9     |      |
| crop type       |           | p = .0015; 1, 9      | p = .0120; 1, 9     |      |
| month*crop type |           | p = .0260; 2, 9      | p = .4353; 2, 9     |      |



# % soil cover by planting date

| Crop | September       | October         | November        |
|------|-----------------|-----------------|-----------------|
| ВА   | 90.0 ± 0.0      | 100.0 ± 0.0     | 40.0 ± 5.8      |
| TA   | $100.0 \pm 0.0$ | $100.0 \pm 0.0$ | 73.3 ± 14.5     |
| С    | 100.0 ± 0.0     | 86.7 ± 6.7      | $0.0 \pm 0.0$   |
| OC   | $100.0 \pm 0.0$ | $90.0 \pm 0.0$  | $0.0 \pm 0.0$   |
| TC   | 100.0 ± 0.0     | 95.0 ± 5.0      | 53.3 ± 8.8      |
| RC   | $100.0 \pm 0.0$ | $100.0 \pm 0.0$ | 70.0 ± 17.3     |
| WC   | 100.0 ± 0.0     | $80.0 \pm 0.0$  | 83.3 ± 8.8      |
| WL   | $100.0 \pm 0.0$ | 70.0 ± 20.0     | 70.0 ± 11.5     |
| V    | 100.0 ± 0.0     | 95.0 ± 5.0      | 33.3 ± 12.0     |
| RV   | 93.3 ± 6.7      | 95.0 ± 5.0      | $100.0 \pm 0.0$ |
| WV   | 93.3 ± 6.7      | $100.0 \pm 0.0$ | 80.0 ± 0.0      |



# % soil cover by planting date

| Crop | September     | October         | November      |
|------|---------------|-----------------|---------------|
| В    | 86.7 ± 8.8    | 90.0 ± 10.0     | 46.7 ± 26.0   |
| Т    | 93.3 ± 6.7    | 95.0 ± 5.0      | 96.7 ± 3.3    |
| R    | 90.0 ± 10.0   | 90.0 ± 10.0     | 93.3 ± 6.7    |
| W    | 76.7 ± 3.3    | 90.0 ± 5.8      | 76.7 ± 8.9    |
| Α    | 76.7 ± 6.7    | 75.0 ± 5.0      | 13.3 ± 3.3    |
| L    | $0.0 \pm 0.0$ | $0.0 \pm 0.0$   | $0.0 \pm 0.0$ |
| OL   | 3.3 ± 3.3     | $0.0 \pm 0.0$   | $0.0 \pm 0.0$ |
| r    | 50.0 ± 17.3   | $10.0 \pm 10.0$ | $0.0 \pm 0.0$ |
| Or   | 33.3 ± 6.7    | 15.0 ± 5.0      | $0.0 \pm 0.0$ |
| 0    | $0.0 \pm 0.0$ | $0.0 \pm 0.0$   | $0.0 \pm 0.0$ |



# % soil cover by grain crops

| Month           | Crop type | % soil cover 2009     | % soil cover 2010   |
|-----------------|-----------|-----------------------|---------------------|
| Sept            |           | 63.0 ± 2.0 <b>a</b>   | 28.2 ± 2.8 <b>b</b> |
| Oct             |           | 63.7 ± 2.4 <b>a</b>   | 47.9 ± 2.8 <b>a</b> |
| Nov             |           | 50.0 ± 2.0 <b>b</b>   | 43.2 ± 2.9 <b>a</b> |
|                 | В         | 64.0 ± 2.7 <b>b</b>   | 22.1 ± 3.6 <b>b</b> |
|                 | 0         | 0.0 ± 2.7 <b>c</b>    | 26.9 ± 3.7 <b>b</b> |
|                 | R         | 79.0 ± 2.7 <b>a</b>   | 53.9 ± 3.6 <b>a</b> |
|                 | Т         | 76.0 ± 2.7 <b>ab</b>  | 51.6 ± 3.6 <b>a</b> |
|                 | W         | 75.6 ± 2. 7 <b>ab</b> | 44.3 ± 3.6 <b>a</b> |
| month (p; df)   |           | p = .0008; 2, 23      | p = .0001; 2, 28    |
| culture (p; df) |           | p <.0001; 4, 23       | p <.0001; 4, 28     |
| month*culture   |           | p = .0197; 8, 23      | p = .0267; 8, 28    |



# % soil cover by legume crops

| Month           | Crop type | % soil cover 2009   | % soil cover 2010   |
|-----------------|-----------|---------------------|---------------------|
| Sept            |           | 28.3 ± 2.4 <b>a</b> | 65.1 ± 4.3 <b>a</b> |
| Oct             |           | 25.9 ± 3.0 <b>a</b> | 50.9 ± 4.3 <b>b</b> |
| Nov             |           | 6.4 ± 2.4 <b>b</b>  | 26.2 ± 4.4 <b>c</b> |
|                 | А         | 23.3 ± 3.4 <b>b</b> | 61.7 ± 4.8 <b>a</b> |
|                 | С         | 34.2 ± 3.2 <b>b</b> | 65.4 ± 4.9 <b>a</b> |
|                 | L         | 0.2 ± 3.7 <b>d</b>  | 19.8 ± 4.8 <b>b</b> |
|                 | R         | 6.5 ± 3.1 <b>c</b>  | 25.5 ± 4.9 <b>b</b> |
|                 | V         | 36.6 ± 3.4 <b>a</b> | 64.6 ± 4.8 <b>a</b> |
| month (p; df)   |           | p <.0001; 2, 23     | p <.0001; 2, 28     |
| culture (p; df) |           | p <.0001; 4, 23     | p <.0001; 4, 28     |
| month*culture   |           | p = .0013; 8, 23    | p =.4722; 8, 28     |



# % soil cover by mono- and bicultures

| Month           | Crop type   | % soil cover 2009    | % soil cover 2010    |
|-----------------|-------------|----------------------|----------------------|
| Sept            | monoculture | 68.3 ± 7.0 <b>bc</b> | 59.0 ± 5.3 <b>bc</b> |
| Sept            | biculture   | 86.9 ± 2.7 <b>a</b>  | 86.9 ± 2.1 <b>a</b>  |
| Oct             | monoculture | 65.5 ± 8.5 <b>cd</b> | 81.3 ± 3.4 <b>ab</b> |
| Oct             | biculture   | 84.4 ± 3.7 <b>ab</b> | 86.0 ± 2.8 <b>a</b>  |
| Nov             | monoculture | 36.0 ± 7.5 <b>e</b>  | 52.0 ± 7.7 <b>c</b>  |
| Nov             | biculture   | 52.7 ± 3.8 <b>de</b> | 68.3 ± 3.8 <b>bc</b> |
| month (p; df)   |             | p = .0004; 2, 8      | p = .0076; 2, 10     |
| culture (p; df) |             | p = .0072; 1, 8      | p = .0023; 1, 10     |
| month*culture   |             | p = .3919; 2, 8      | p = .2610; 2, 10     |



# Plant height of grains

| Month           | <b>Culture type</b> | Plant height (cm) 2009 | Plant height (cm) 2010 |
|-----------------|---------------------|------------------------|------------------------|
| Sept            | monoculture         | 71.5 ± 8.4 a           | 60.8 ± 5.0 c           |
| Sept            | biculture           | 70.7 ± 3.7 a           | 66.8 ± 4.0 bc          |
| Oct             | monoculture         | 67.9 ± 10.3 a          | 74.9 ± 5.0 abc         |
| Oct             | biculture           | 68.7 ± 4.6 a           | 82.3 ± 4.0 a           |
| Nov             | monoculture         | 41.2 ± 8.4 b           | 77.6 ± 4.9 ab          |
| Nov             | biculture           | 36.9 ± 3.7 b           | 80.7 ± 4.0 ab          |
| month (p; df)   |                     | p = .0007; 2, 8        | p = .0123; 2, 8        |
| culture (p; df) |                     | p = .7837; 1, 8        | p = .0944; 1, 8        |
| month*culture   |                     | p = .8945; 2, 8        | p = .4247; 2, 8        |
|                 |                     |                        |                        |



# Plant height of legumes

| Month           | <b>Culture type</b> | Plant height (cm) 2009 | Plant height (cm) 2010 |
|-----------------|---------------------|------------------------|------------------------|
| Sept            | monoculture         | 32.5 ± 5.8 <b>a</b>    | 45.3 ± 4.0 <b>b</b>    |
| Sept            | biculture           | 42.8 ± 2.8 <b>a</b>    | 52.4 ± 4.0 <b>ab</b>   |
| Oct             | monoculture         | 29.5 ± 7.4 <b>ab</b>   | 45.7 ± 4.0 <b>b</b>    |
| Oct             | biculture           | 39.8 ± 3.4 <b>a</b>    | 55.2 ± 2.5 <b>a</b>    |
| Nov             | monoculture         | 8.8 ± 6.0 <b>c</b>     | 45.3 ± 2.6 <b>b</b>    |
| Nov             | biculture           | 14.1 ± 2.8 <b>bc</b>   | 47.6 ± 2.5 <b>b</b>    |
| month (p; df)   |                     | p = .0009; 2, 8        | p = .1262; 2, 8        |
| culture (p; df) |                     | p = .1263; 1, 8        | p = .0158; 1, 8        |
| month*culture   |                     | p = .9887; 2, 8        | p = .4280; 2, 8        |



## Things to Consider:

- Crop to be planted
- Maturity differences between cover species
- Ease of killing
  - mowing versus rolling
- End goal (nitrogen, weed control, disease suppression)

Slide courtesy of Gary Bates, UT Forage Specialist



# Thank you! Questions?

## **Annette Wszelaki**

annettew@utk.edu

(865) 974-8332

http://vegetables.tennessee.edu

http://organics.tennessee.edu

TN Horticultural Expo: January 26-28

Organic Crops Field Tour: April 26



