COVER CROPS IN VEGETABLES AND STRAWBERRIES

David Butler Professor, Dept. of Plant Sciences University of Tennessee

My research

Overview: Cover crops

- Why cover crops?
 Choosing a cover crop
- Cover crop management
- Ongoingresearch

Why cover crops?

- Potentially provide a variety of beneficial services to cropping systems:
 - Nitrogen fixation
 - Plant biomass to soil and improved soil quality
 - Prevention of nutrient and soil loss
 - Weed suppression
 - Rotational effects
 - Habitat for beneficial organisms
 - Protection of water quality
 - Provision of mulch material
 - And more...

What are potential drawbacks?

- Slowed soil warming in spring
- Direct, indirect, & opportunity costs
- Immobilization of nitrogen
- Potential to increase pest issues

Overview: Cover crops

□ Why cover crops? Choosing a cover crop □ Cover crop management Ongoing research

Choosing a cover crop

- Step 1: Identify what function is needed from the cover crop
 - What is limiting production in a given system? (e.g. low fertility? poor soil structure? erosion? weed or pathogen populations?)
 - What functions can cover crops serve for vegetable and small fruit systems?

Choosing a cover crop

□ **<u>Step 2</u>**: Identify the cover crop planting niche

Where does the cover crop fit in the crop rotation?

- Short or long warm-season niches
- Short or long cool-season niches
- With cash crop
- Define timing of critical cash crop operations, so that cover crop management does not conflict

Choosing a cover crop

- Step 3: Select cover crop that meets goals and requirements of steps 1 & 2
 - Consider benefits and drawbacks (perfect fit is unlikely)
 - Consider cost and availability of seed
 - Consider management costs (field operations needed to plant, kill, etc.) for specific species or mixture

Cover crop costs

Direct costs

- Seed
- Establishment (tillage, drilling)
- Termination (mowing, tillage, rolling, spraying)
- Indirect costs
 - Interference with following cash crop
 - Soil temperature, nitrogen release, pests, etc.
 - Management issues
 - Difficult termination, weediness, disease pressure
- Opportunity costs
 - Cost of forfeit income if a cash crop alternative was feasible

Cover crops for vegetables/strawberries

Cool-season annuals

- Legumes
- Non–legumes
 - Grasses
 - Broadleaves
- Warm-season annuals
 - Legumes
 - Non–legumes
 - Grasses
 - Broadleaves

Cool-season annual legumes

- Crimson clover (Trifolium incarnatum)
 - Total N contribution 70 to 150 lbs/acre
 - Planted in mid-fall in TN, rapid spring growth
 - Grows well mixed with small grains (e.g., rye, triticale, wheat)
 - Good pollen source, ~April flowering
 - "Disease bridge" with many vegetables?
 - 'Dixie' most common cultivar
- Others include hairy vetch, winter pea

Rye (Secale cereale)

- Should not be confused with ryegrasses (Lolium spp.)
- Very cold hardy
- Good nutrient scavenger
- High early & late season biomass
- Allelopathic
- 'Wrens Abruzzi', 'Wheeler',
 'Elbon' and other forage
 varieties

Other cereal grains

- Wheat (*Triticum spp.*), barley (*Hordeum vulgare*), triticale (× *Triticosecale*)
- Common oat (Avena sativa) or black oat (A. strigosa) can be used for late winter or early fall planting (hardiness varies)
- Select forage rather than grain cultivars

- Annual ryegrass (Lolium multiflorum)
 - Good nutrient scavenging
 - Good biomass production with sufficient N and moisture
 - Residue does not persist as long as cereal grains
 - Excellent for row middles with plastic beds
 - Can become weedy without herbicides, <u>limiting it's use in</u> <u>organic systems</u>

Brassicas

- Mustards
- Rapeseed & canola
- Radish (forage, oilseed, 'tillage' types)
- Arugula (cover crop types)
- Pest suppression (in nonbrassica rotations!)
- Good nutrient scavenging ability
- Winter hardiness varies; many work well in brief fallow periods

(Clark, 2007; photos: D.M. Butler, USDA-SARE)

Warm-season legumes

Sunn hemp (Crotalaria juncea)

- Rapid biomass and N production (120 lbs N/acre in 9 weeks)
- Does best in very warm conditions
- Limited by seed cost
- Suppressive to root-knot and reniform nematodes
- Others: cowpea, soybean

Warm-season non-legumes

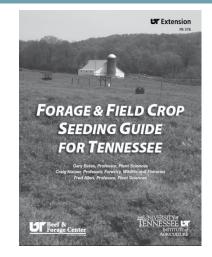
- Sorghum-sudangrass hybrid (Sorghum bicolor x S. bicolor var. sudanense)
 - Very high biomass production, good for building soil organic matter
 - High allelopathy and very competitive with weeds
 - Suppressive against pathogens and nematodes
- Others: millets

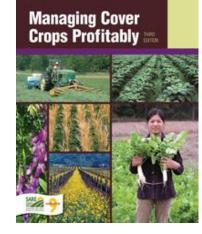
Warm-season non-legumes

- Buckwheat (Fagopyrum esculentum)
 - Good for brief fallow (maturity in 30-45 days)
 - Good smother crop
 - Attracts pollinators
 - Can seed easily and become weedy if not wellmanaged

Overview: Cover crops

- □ Why cover
 - crops?
- Choosing a cover crop
- Cover crop
 management
- Ongoingresearch




Cover crop management

- Plant at the appropriate time
- Plant with good seed to soil contact
- For information on planting rates, dates, methods, see:
 - Forage & Field Crop Seeding Guide for Tennessee, UT Extension PB378, <u>www.utextension.tennessee.edu/publicati</u> <u>ons/documents/pb378.pdf</u>

Southern cover crops council, <u>https://southerncovercrops.org/</u>

(Photo: D. Butler)

Now what?

- How will crop be planted?
 - Tillage, plastic
 - Tillage, no plastic
 - Reduced-tillage
 - Strip or zone tillage

- How will cover crop residue be managed?
 - Removed from field
 - Incorporated with tillage
 - Left at soil surface

Reducing opportunity costs...

(Photo from: uvm.edu)

(Flail mower; photo from D.M. Butler)

(Photo from: morninggloryfarm.com)

(Spader; photo from puyallup.wsu.edu)

(Rotovator; photo from: farmingsweetbay.wordpress.com)

Now what?

How will crop be planted?

- Tillage, plastic
- Tillage, no plastic
- Reduced-tillage
- Strip or zone tillage

- How will cover crop residue be managed?
 - Removed from field
 - Incorporated with tillage
 - Left at soil surface

(Flail mower & stalk chopper; photo from ucanr.edu)

(Roller-crimper; photo from northcentralsare.org)

(Flail mower as roller; photo from D.M. Butler)

(No-till pumpkin; photo from poltersberryfarm.com)

Now what?

How will crop be planted?

- Tillage, plastic
- Tillage, no plastic
- 🗖 No-till
- Strip or zone tillage

- How will cover crop residue be managed?
 - Removed from field
 - Incorporated with tillage
 - Left at soil surface

(strip tillage; Photo from: www.butternutvalleyfarm.com)

(zone tillage; Photo from: www.fentonsproduce.com)

Ongoing cover crop research

Objectives

- Evaluate optimized non-fumigant soil treatment (anaerobic soil disinfestation, ASD) under varying rotation/cover crop systems
 - a) strawberry-cucurbit/wheat cover crop
 - b) strawberry-summer cover crop (sorghumsudangrass)
 - c) continuous strawberry

a. Cucurbits/winter cover crop

Pumpkin (C. pepo cv. Baby boo)

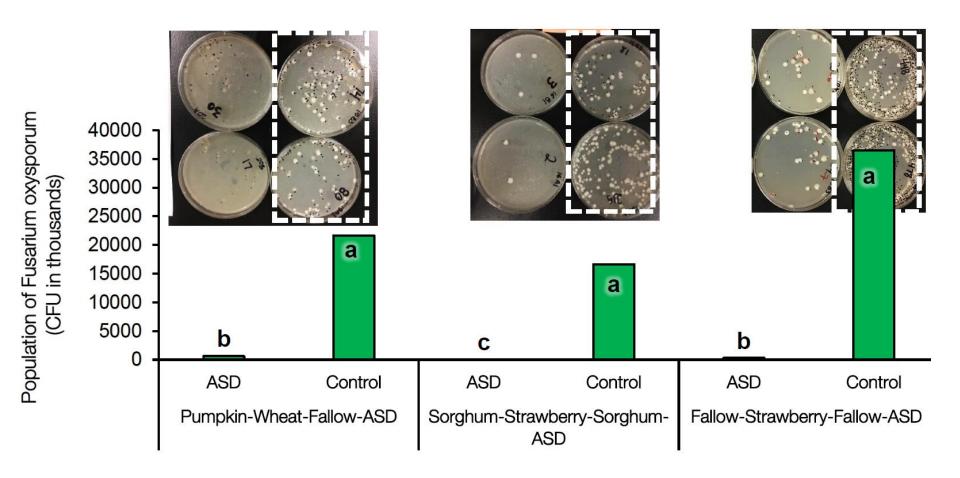
Winter wheat -Fallow ASD treatment mid-August to mid-September

Strawberry

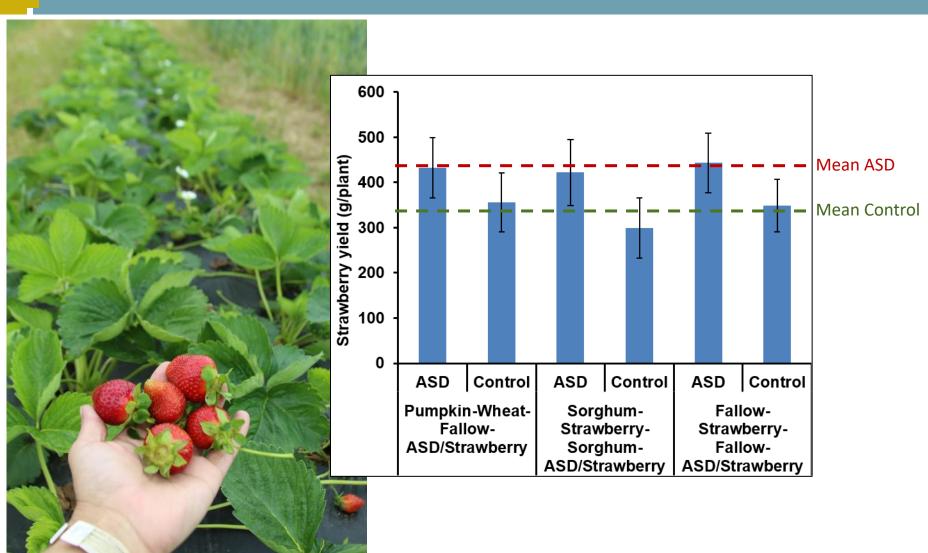
b. Summer cover crop

Sorghum-sudan

cover crop


Strawberry Cover crop Strawberry Sorghum-sudan mid-August to mid-September

Strawberry


c. Fallow-Continuous strawberry

F. oxysporum mortality

ASD effect on strawberry yield

(Shrestha et al., 2022, *in preparation*)

Acknowledgements

Research supported in part by:
 USDA-NIFA (2012-51102-20293, 2017-51181-26832, 2019-51106-30197)
 USDA-SARE (GS14-128)
 USDA-ARS (A15-0229)
 Tennessee Ag. Experiment Station

DESEA

